1. Marmilla Subregion, Sardinia, Italy Uses: Emollient in bronchial inflammatory processes, Diuretic DOI: 10.3390/plants11223165 PubMed: 36432894
1. Arbuscular mycorrhiza convey significant plant carbon to a diverse hyphosphere microbial food web and mineral-associated organic matter. Kakouridis A et al (2024). New Phytol. DOI: 10.1111/nph.19560 PubMed: 38358052
2. Changing patterns of genetic differentiation in the slender wild oat, Avena barbata. Latta RG, Crosby K and Hamrick JL (2022). Proc Natl Acad Sci U S A. DOI: 10.1073/pnas.2121248119 PubMed: 36161958
3. Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. Kakouridis A et al (2022). New Phytol. DOI: 10.1111/nph.18281 PubMed: 35633108
4. Root Carbon Interaction with Soil Minerals Is Dynamic, Leaving a Legacy of Microbially Derived Residues. Neurath RA et al (2021). Environ Sci Technol. DOI: 10.1021/acs.est.1c00300 PubMed: 34558892
5. Identification of the wild and cultivated hosts of wheat dwarf virus and oat dwarf virus in Iran. Pouramini N et al (2019). Virusdisease. DOI: 10.1007/s13337-019-00557-y PubMed: 31897417
6. Rainfall variability maintains grass-forb species coexistence. Hallett LM et al (2019). Ecol Lett. DOI: 10.1111/ele.13341 PubMed: 31298471
7. Broad-Spectrum Resistance to Crown Rust, Puccinia coronata f. sp. avenae, in Accessions of the Tetraploid Slender Oat, Avena barbata. Carson ML et al (2009). Plant Dis. DOI: 10.1094/PDIS-93-4-0363 PubMed: 30764218
8. Unidirectional grass hairs usher insects away from meristems. Karban R et al (2019). Oecologia. DOI: 10.1007/s00442-019-04355-7 PubMed: 30758657
9. Foliar pathogens are unlikely to stabilize coexistence of competing species in a California grassland. Spear ER and Mordecai EA (2018). Ecology. DOI: 10.1002/ecy.2427 PubMed: 30179251
10. Microbial community assembly differs across minerals in a rhizosphere microcosm. Whitman T et al (2018). Environ Microbiol. DOI: 10.1111/1462-2920.14366 PubMed: 30047192
11. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Zhalnina K et al (2018). Nat Microbiol. DOI: 10.1038/s41564-018-0129-3 PubMed: 29556109
12. Evolving California genotypes of Avena barbata are derived from multiple introductions but still maintain substantial population structure. Genetics Crosby K, Stokes TO and Latta RG (2014). PeerJ. DOI: 10.7717/peerj.633 PubMed: 25392753
13. Analysis of leaf and root transcriptomes of soil-grown Avena barbata plants. Genetics Swarbreck SM et al (2011). Plant Cell Physiol. DOI: 10.1093/pcp/pcq188 PubMed: 21310848
14. Path analysis of natural selection via survival and fecundity across contrasting environments in Avena barbata. Latta RG and McCain C (2009). J Evol Biol. DOI: 10.1111/j.1420-9101.2009.01857.x PubMed: 19824926
15. Testing for local adaptation in Avena barbata: a classic example of ecotypic divergence. Latta RG et al (2009). Mol Ecol. DOI: 10.1111/j.1365-294X.2009.04302.x PubMed: 19674308
16. Heritable variation and genetic correlation of quantitative traits within and between ecotypes of Avena barbata. Gardner KM and Latta RG (2008). J Evol Biol. DOI: 10.1111/j.1420-9101.2008.01522.x PubMed: 18373589
17. Evolution of multilocus genetic structure in Avena hirtula and Avena barbata. Allard RW et al (1993). Genetics. PubMed: 8307328
18. Genetic diversity and adaptedness in tetraploid Avena barbata and its diploid ancestors Avena hirtula and Avena wiestii. Genetics García P et al (1991). Proc Natl Acad Sci U S A. PubMed: 1996323