Marchantia polymorpha

Ethnobotanical Studies

Studies

Diurnal.plant.tools in 2024: expanding to Marchantia polymorpha and four angiosperms.

Tan QW, Tan E and Mutwil M (2024).
Plant Cell Physiol.
PubMed:
39219534

A kinesin-like protein, KAC, is required for light-induced and actin-based chloroplast movement in Marchantia polymorpha.

Yamamoto-Negi Y et al (2024).
Plant Cell Physiol.
PubMed:
39215593

Manganese deficiency alters photosynthetic electron transport in Marchantia polymorpha.

Hani U and Krieger-Liszkay A (2024).
Plant Physiol Biochem.
PubMed:
39173366

A structure-redesigned intrinsically disordered peptide that selectively inhibits a plant transcription factor in jasmonate signaling.

Takaoka Y, Liu R and Ueda M (2024).
PNAS Nexus.
PubMed:
39139264

Regulation of ROP GTPase cycling between active/inactive states is essential for vegetative organogenesis in Marchantia polymorpha.

Sakai Y et al (2024).
Development.
PubMed:
39133134

Proteomic dynamics revealed sex-biased responses to combined heat-drought stress in Marchantia.

Guerrero S et al (2024).
J Integr Plant Biol.
PubMed:
39109947

SENSITIVE TO FREEZING2 is crucial for growth of Marchantia polymorpha under acidic conditions.

Shimizu S et al (2024).
J Plant Res.
PubMed:
39098962

An ancient role for CYP73 monooxygenases in phenylpropanoid biosynthesis and embryophyte development.

Knosp S et al (2024).
EMBO J.
PubMed:
39090438

Contrasting and conserved roles of NPR pathways in diverged land plant lineages.

Jeon HW et al (2024).
New Phytol.
PubMed:
39056290

The BNB-GLID module regulates germline fate determination in Marchantia polymorpha.

Ren X et al (2024).
Plant Cell.
PubMed:
39041486

Microtubules and actin filaments direct nuclear movement during the polarisation of Marchantia spore cells.

Attrill ST et al (2024).
Development.
PubMed:
39041335

Plasmodesmata dynamics in bryophyte model organisms: secondary formation and developmental modifications of structure and function.

Wegner L and Ehlers K (2024).
Planta.
PubMed:
38965075

How a liverwort reacts to wounding: tracing the evolution of defence responses in the nonvascular plant Marchantia polymorpha.

Beraldo C and Alboresi A (2024).
New Phytol.
PubMed:
38923521

Marchantia polymorpha GOLDEN2-LIKE transcriptional factor; a central regulator of chloroplast and plant vegetative development.

Hernández-Muñoz A et al (2024).
New Phytol.
PubMed:
38922903

Ancient origin of acetyltransferases catalyzing O-acetylation of plant cell wall polysaccharides.

Zhong R, Adams ER and Ye ZH (2024).
Plant Cell Physiol.
PubMed:
38915186

An Efficient Sulfadiazine Selection Scheme for Stable Transformation in the Model Liverwort Marchantia polymorpha.

Robinson K et al (2024).
J Exp Bot.
PubMed:
38824404

Optimising promoters and subcellular localisation for constitutive transgene expression in Marchantia polymorpha.

Tse SW et al (2024).
Plant Cell Physiol.
PubMed:
38822700

The PLETHORA Homolog In Marchantia polymorpha is Essential To Meristem Maintenance, Developmental Progression, And Redox Homeostasis.

Fu J et al (2024).
Plant Cell Physiol.
PubMed:
38757817

Publisher Correction: A non-canonical BZR/BES transcription factor regulates the development of haploid reproductive organs in Marchantia polymorpha.

Furuya T et al (2024).
Nat Plants.
PubMed:
38649485

Myosin XI, a model of its conserved role in plant cell tip growth.

Review
Chocano-Coralla EJ and Vidali L (2024).
Biochem Soc Trans.
PubMed:
38629612

A non-canonical BZR/BES transcription factor regulates the development of haploid reproductive organs in Marchantia polymorpha.

Furuya T et al (2024).
Nat Plants.
PubMed:
38605238

The N-terminal domains of NLR immune receptors exhibit structural and functional similarities across divergent plant lineages.

Chia KS et al (2024).
Plant Cell.
PubMed:
38598645

The Chaperone NASP Contributes to De Novo Deposition of the Centromeric Histone Variant CENH3 in Arabidopsis Early Embryogenesis.

Takeuchi H et al (2024).
Plant Cell Physiol.
PubMed:
38597891

The cAMP signaling module regulates sperm motility in the liverwort Marchantia polymorpha.

Yamamoto C et al (2024).
Proc Natl Acad Sci U S A.
PubMed:
38593080

Conservation of Long-Range Signaling in Land Plants via Glutamate Receptor-Like Channels.

Toyota M et al (2024).
Plant Cell Physiol.
PubMed:
38581665

KATANIN-mediated microtubule severing is required for MTOC organisation and function in Marchantia polymorpha.

Attrill ST and Dolan L (2024).
Development.
PubMed:
38572965

Plants as a cost-effective source for customizable photosynthetic wound dressings: A proof of concept study.

González-Itier S et al (2024).
Biotechnol Bioeng.
PubMed:
38555480

Dual regulation of cytochrome P450 gene expression by two distinct small RNAs, a novel tasiRNA and miRNA, in Marchantia polymorpha.

Hung YL et al (2024).
Plant Cell Physiol.
PubMed:
38545690

Divergent evolution of the alcohol-forming pathway of wax biosynthesis among bryophytes.

Keyl A et al (2024).
New Phytol.
PubMed:
38501480

Antisense transcription controls sexual differentiation of the liverwort Marchantia polymorpha.

Hisanaga T et al (2024).
Plant Cell Physiol.
PubMed:
38465452

Plant evolution: A tapetum is now effectively present in all land plant lineages.

Taylor WA and Strother PK (2024).
Curr Biol.
PubMed:
38412824

The ALOG domain defines a family of plant-specific transcription factors acting during Arabidopsis flower development.

Rieu P et al (2024).
Proc Natl Acad Sci U S A.
PubMed:
38412122

The landscape of transcription factor promoter activity during vegetative development in Marchantia.

Romani F et al (2024).
Plant Cell.
PubMed:
38391349

Analysis of Marchantia polymorpha-microorganism interactions: basis for understanding plant-microbe and plant-pathogen interactions.

Review
Poveda J et al (2024).
Front Plant Sci.
PubMed:
38384768

Unveiling the molecular mechanisms of arsenic tolerance and resilience in the primitive bryophyte Marchantia polymorpha L.

Dutta P et al (2024).
Environ Pollut.
PubMed:
38360385

The Oldest Bryophyte Herbarium Specimens from Central Europe, Collected by M. E. Boretius in 1717: Taxonomy, Nomenclature, Datation and Ethnopharmacology.

Drobnik J, Stebel A and Graniszewska M (2024).
Plants (Basel).
PubMed:
38337882

Growth control of Marchantia polymorpha gemmae using nonthermal plasma irradiation.

Tsuboyama S et al (2024).
Sci Rep.
PubMed:
38326376

Convergent evolution of water-conducting cells in Marchantia recruited the ZHOUPI gene promoting cell wall reinforcement and programmed cell death.

Lu YT et al (2024).
Curr Biol.
PubMed:
38295796

Conserved CKI1-mediated signaling is required for female germline specification in Marchantia polymorpha.

Bao H et al (2024).
Curr Biol.
PubMed:
38295795

A subclass II bHLH transcription factor in Marchantia polymorpha gives insight into the ancestral land plant trait of spore formation.

Levins J, Dierschke T and Bowman JL (2024).
Curr Biol.
PubMed:
38280380

The phosphorylated pathway of serine biosynthesis affects sperm, embryo, and sporophyte development, and metabolism in Marchantia polymorpha.

Wang M et al (2024).
Commun Biol.
PubMed:
38267515

Efficient Production of Flavonoid Glucuronides in Escherichia coli Using Flavonoid O-Glucuronosyltransferases Characterized from Marchantia polymorpha.

Du NH et al (2024).
J Nat Prod.
PubMed:
38266493

Rapid propagation of Ca2+ waves and electrical signals in a liverwort Marchantia polymorpha.

Watanabe K et al (2024).
Plant Cell Physiol.
PubMed:
38195149

Thermospermine is an evolutionarily ancestral phytohormone required for organ development and stress responses in Marchantia polymorpha.

Furumoto T et al (2024).
Plant Cell Physiol.
PubMed:
38179828

Transcription of the antisense long non-coding RNA, SUPPRESSOR OF FEMINIZATION, represses expression of the female-promoting gene FEMALE GAMETOPHYTE MYB in the liverwort Marchantia polymorpha.

Summary

Researchers found that a specific RNA called SUF plays a key role in determining the sex of Marchantia polymorpha plants. They discovered that when SUF is present, the plant develops as male, but by inserting a sequence into SUF, the plant can develop as female. The study highlights the importance of SUF transcription in controlling sex differentiation in M. polymorpha.

Kajiwara T et al (2024).
Plant Cell Physiol.
PubMed:
38174428

MpTGA, together with MpNPR, regulates sexual reproduction and independently affects oil body formation in Marchantia polymorpha.

Gutsche N et al (2023).
New Phytol.
PubMed:
38095258

Bio-guided isolation of alpha-glucosidase inhibitory compounds from Vietnamese liverwort Marchantia polymorpha: in vitro and in silico studies.

Nguyen NKV et al (2023).
RSC Adv.
PubMed:
38058554

Circadian clock does not play an essential role in daylength measurement for growth-phase transition in Marchantia polymorpha.

Kanesaka Y et al (2023).
Front Plant Sci.
PubMed:
38023914

Conserved and non-conserved RNA-target modules in plants: lessons for a better understanding of Marchantia development.

Summary

Scientists discuss the role of regulatory non-coding RNAs (ncRNAs) in the development of the liverwort Marchantia polymorpha. They highlight conserved and specific ncRNA-target modules and suggest the need for further research to understand the molecular mechanisms that control ncRNA-directed developmental processes.

Review Genetics
Pietrykowska H et al (2023).
Plant Mol Biol.
PubMed:
37991688

The D-mannose/L-galactose pathway plays a predominant role in ascorbate biosynthesis in the liverwort Marchantia polymorpha but is not regulated by light and oxidative stress.

Ishida T et al (2023).
Plant J.
PubMed:
37983622

Control of stem cell behavior by CLE-JINGASA signaling in the shoot apical meristem in Marchantia polymorpha.

Takahashi G, Kiyosue T and Hirakawa Y (2023).
Curr Biol.
PubMed:
37977139

Paternal imprinting in Marchantia polymorpha.

Review
Montgomery SA and Berger F (2023).
New Phytol.
PubMed:
37936346

Plastid terminal oxidase (PTOX) protects photosystem I and not photosystem II against photoinhibition in Arabidopsis thaliana and Marchantia polymorpha.

Messant M et al (2023).
Plant J.
PubMed:
37921075

Accessible gene borders establish a core structural unit for chromatin architecture in Arabidopsis.

Summary

Hi-C was used to study chromatin structure in Arabidopsis, tomato, maize, and Marchantia polymorpha genomes. Genes form folding domain units and neighboring genes form larger contact domains, with transcription factors binding to accessible regions contributing to gene domains and genome folding in plants.

Lee H and Seo PJ (2023).
Nucleic Acids Res.
PubMed:
37884483

Population genomics of the facultatively sexual liverwort Marchantia polymorpha.

Sandler G, Agrawal AF and Wright SI (2023).
Genome Biol Evol.
PubMed:
37883717

Functional comparison of phototropin from the liverworts Apopellia endiviifolia and Marchantia polymorpha.

Yong LK et al (2023).
Photochem Photobiol.
PubMed:
37882095

Divergent outcomes of genetic conflict on the UV sex chromosomes of Marchantia polymorpha and Ceratodon purpureus.

Summary

This study compares two plant species, Marchantia polymorpha and Ceratodon purpureus, and their genetic mechanisms for sexual dimorphism. The findings suggest that different species exhibit distinct ways of controlling sexual development, which emphasizes the need for further research in understanding the evolution of sexual dimorphism.

Review Genetics
McDaniel SF et al (2023).
Curr Opin Genet Dev.
PubMed:
37864936

The ancestral chromatin landscape of land plants.

Hisanaga T et al (2023).
New Phytol.
PubMed:
37823324

Analysis of plant-specific ANTH domain-containing protein in Marchantia polymorpha.

Minamino N et al (2023).
Plant Cell Physiol.
PubMed:
37804254

Jasmonates and salicylic acid: Evolution of defense hormones in land plants.

Review
Monte I et al (2023).
Curr Opin Plant Biol.
PubMed:
37801737

Harnessing Deep Learning to Analyze Cryptic Morphological Variability of Marchantia polymorpha.

Tomizawa Y et al (2023).
Plant Cell Physiol.
PubMed:
37797211

Phosphatidic acid phosphohydrolase modulates glycerolipid synthesis in Marchantia polymorpha and is crucial for growth under both nutrient-replete and -deficient conditions.

Shimojo M et al (2023).
Planta.
PubMed:
37792042

Stiffness transitions in new walls post-cell division differ between Marchantia polymorpha gemmae and Arabidopsis thaliana leaves.

Bonfanti A et al (2023).
Proc Natl Acad Sci U S A.
PubMed:
37782806

A bHLH heterodimer regulates germ cell differentiation in land plant gametophytes.

Saito M et al (2023).
Curr Biol.
PubMed:
37776860

Impact of varying light spectral compositions on photosynthesis, morphology, chloroplast ultrastructure, and expression of light-responsive genes in Marchantia polymorpha.

Summary

Scientists discovered that red light decreases photosynthesis, while blue light enhances the production of secondary metabolites. Far-red light affects gene expression and morphology. These findings are valuable for studying plant responses to light and can guide future agricultural and horticultural research.

Pashkovskiy P et al (2023).
Plant Physiol Biochem.
PubMed:
37776673

Exploring the extensin gene family: an updated genome-wide survey in plant and algae.

Summary

This study classified and characterized different types of extensins (hydroxyproline-rich glycoproteins) in 194 plant and algal species. It identified new crosslinking extensins and proposed an evolutionary history of these genes. This information can aid in understanding cell wall reinforcement and environmental responses in plants.

Cheng SY et al (2023).
J Exp Bot.
PubMed:
37769205

The Polycomb repressive complex 2 deposits H3K27me3 and represses transposable elements in a broad range of eukaryotes.

Hisanaga T et al (2023).
Curr Biol.
PubMed:
37738971

Functional specialization of two UDP-glycosyltransferases MpUGT735A2 and MpUGT743A1 in the liverworts Marchantia polymorpha.

Zhu TT et al (2023).
J Cell Physiol.
PubMed:
37642286

LysM-mediated signaling in Marchantiapolymorpha highlights the conservation of pattern-triggered immunity in land plants.

Yotsui I et al (2023).
Curr Biol.
PubMed:
37619565

Biosynthesis of gibberellin-related compounds modulates far-red light responses in the liverwort Marchantia polymorpha.

Sun R et al (2023).
Plant Cell.
PubMed:
37597168

How gibberellin-related compounds shape far-red light responses in Marchantia polymorpha.

Yadav A et al (2023).
Plant Cell.
PubMed:
37594120

An enhancer trap system to track developmental dynamics in Marchantia polymorpha.

Marron AO et al (2023).
Plant J.
PubMed:
37583263

Photosynthetic Efficiency of Marchantia polymorpha L. in Response to Copper, Iron, and Zinc.

Sorce C et al (2023).
Plants (Basel).
PubMed:
37570930

The advantages of crosstalk during the evolution of the BZR1-ARF6-PIF4 (BAP) module.

Diao R et al (2023).
J Integr Plant Biol.
PubMed:
37552560

Divergence of trafficking and polarization mechanisms for PIN auxin transporters during land plant evolution.

Tang H et al (2023).
Plant Commun.
PubMed:
37528584

Immunochemical Identification of the Main Cell Wall Polysaccharides of the Early Land Plant Marchantia polymorpha.

Kolkas H, Burlat V and Jamet E (2023).
Cells.
PubMed:
37508498

DIENELACTONE HYDROLASE LIKE PROTEIN1 negatively regulates the KAI2-ligand pathway in Marchantia polymorpha.

Kameoka H et al (2023).
Curr Biol.
PubMed:
37480853

Statistical analysis of organelle movement using state-space models.

Nishio H, Hirano S and Kodama Y (2023).
Plant Methods.
PubMed:
37407985

RHO GTPase of plants regulates polarized cell growth and cell division orientation during morphogenesis.

Mulvey H and Dolan L (2023).
Curr Biol.
PubMed:
37385256

The Treatment of Aquaculture Wastewater with Biological Aerated Filters: From the Treatment Process to the Microbial Mechanism.

Ding J et al (2023).
Toxics.
PubMed:
37368579

Whole-Genome Sequence of Paenibacillus marchantiae Isolated from the Liverwort Marchantia polymorpha subsp. ruderalis Ecotype BoGa.

Meierhenrich A et al (2023).
Microbiol Resour Announc.
PubMed:
37347158

UHPLC-QTOF-MS Metabolic Profiling of Marchantia polymorpha and Evaluation of Its Hepatoprotective Activity Using Paracetamol-Induced Liver Injury in Mice.

Asif A et al (2023).
ACS Omega.
PubMed:
37273612

B-GATA factors are required to repress high-light stress responses in Marchantia polymorpha and Arabidopsis thaliana.

Schröder P et al (2023).
Plant Cell Environ.
PubMed:
37254806

Three-dimensional morphological analysis revealed the cell patterning bases for the sexual dimorphism development in the liverwort Marchantia polymorpha.

Cui Y et al (2023).
Plant Cell Physiol.
PubMed:
37225421

Different evolutionary patterns of TIR1/AFBs and AUX/IAAs and their implications for the morphogenesis of land plants.

Su L et al (2023).
BMC Plant Biol.
PubMed:
37202746

MpDWF5A-encoded sterol Δ7-reductase is essential for the normal growth and development of Marchantia polymorpha.

Hatada M et al (2023).
Plant Cell Physiol.
PubMed:
37178336

Vibration for enhancement of electrochemical analysis of biomolecules in a droplet on the rough surface of a disposable working electrode.

Wang YH et al (2023).
Anal Chim Acta.
PubMed:
37037634

Abscisic acid-mediated sugar responses are essential for vegetative desiccation tolerance in the liverwort Marchantia polymorpha.

Nobiza K et al (2023).
Physiol Plant.
PubMed:
36974502

Transcriptome changes in chlorsulfuron-treated plants are caused by acetolactate synthase inhibition and not induction of a herbicide detoxification system in Marchantia polymorpha.

Casey A et al (2023).
Pestic Biochem Physiol.
PubMed:
36963939

Evolution of the jasmonate ligands and their biosynthetic pathways.

Chini A et al (2023).
New Phytol.
PubMed:
36942932

Chemical and Biological Studies of Endophytes Isolated from Marchantia polymorpha.

Stelmasiewicz M, Świątek Ł and Ludwiczuk A (2023).
Molecules.
PubMed:
36903448

PIN-FORMED is required for shoot phototropism/gravitropism and facilitates meristem formation in Marchantia polymorpha.

Fisher TJ et al (2023).
New Phytol.
PubMed:
36880411

Control of vegetative reproduction in Marchantiapolymorpha by the KAI2-ligand signaling pathway.

Komatsu A et al (2023).
Curr Biol.
PubMed:
36863344

Imaging of Chloroplast Movement Responses to Light Stimulation in Different Intensities in Rice.

Wu H et al (2023).
Bio Protoc.
PubMed:
36845530

Autophagy regulates plastid reorganization during spermatogenesis in the liverwort Marchantia polymorpha.

Norizuki T et al (2023).
Front Plant Sci.
PubMed:
36844055

Cross-stress gene expression atlas of Marchantia polymorpha reveals the hierarchy and regulatory principles of abiotic stress responses.

Tan QW et al (2023).
Nat Commun.
PubMed:
36813788

Insights into Cryptochrome Modulation of ABA Signaling to Mediate Dormancy Regulation in Marchantia polymorpha.

Liao J et al (2023).
New Phytol.
PubMed:
36797656

Comprehensive analysis of peptide-coding genes and initial characterization of an LRR-only microprotein in Marchantia polymorpha.

Kobayashi H et al (2023).
Front Plant Sci.
PubMed:
36756228

Manganese concentration affects chloroplast structure and the photosynthetic apparatus in Marchantia polymorpha.

Messant M et al (2023).
Plant Physiol.
PubMed:
36722179

A 3D-printed analytical device seamlessly integrating sample treatment for electrochemical detection of IAA in Marchantia polymorpha.

Lin XY et al (2023).
Anal Bioanal Chem.
PubMed:
36705731

Meristem dormancy in Marchantia polymorpha is regulated by a liverwort-specific miRNA and a clade III SPL gene.

Streubel S et al (2023).
Curr Biol.
PubMed:
36696899

CIPK-B is essential for salt stress signalling in Marchantia polymorpha.

Tansley C et al (2023).
New Phytol.
PubMed:
36660914

Stomatal regulators are co-opted for seta development in the astomatous liverwort Marchantia polymorpha.

Moriya KC et al (2023).
Nat Plants.
PubMed:
36658391

Gateway to morphogenesis: TIR1 auxin receptor is essential for cellular differentiation and organ formation in Marchantia polymorpha.

Gorelova V et al (2023).
Plant Cell.
PubMed:
36648106

Parallel evolution of two AIM24 protein subfamilies and their conserved functions in ER stress tolerance in land plants.

Guan Y et al (2023).
Plant Commun.
PubMed:
36578211

On the configuration and occurrence of 2,6-cyclocuparan-3-ols: Resolving a lasting discrepancy.

Zlatković DB, Đorđević Zlatković MR and Radulović NS (2023).
Phytochemistry.
PubMed:
36549382

Auxin signaling is essential for organogenesis but not for cell survival in the liverwort Marchantia polymorpha.

Suzuki H et al (2023).
Plant Cell.
PubMed:
36529527

Plant lineage-specific PIKMIN1 drives APC/CCCS52A2 E3-ligase activity-dependent cell division.

Willems A et al (2023).
Plant Physiol.
PubMed:
36423220

An Automated High-Throughput Phenotyping System for Marchantia polymorpha.

Medina-Jimenez K, Arteaga-Vazquez MA and Lorence A (2022).
Methods Mol Biol.
PubMed:
35895191

Marchantia polymorpha: Taxonomy, Phylogeny and Morphology of a Model System.

Summary

Marchantia polymorpha is a commonly studied plant in plant biology due to its potential as a new model system, aided by ease of genetic transformation and genome sequencing. The author provides a comprehensive review of the plant's anatomy and developmental morphology of each organ and tissue of the gametophyte and sporophyte through extensive literature review and observations. This research provides an important resource for future studies on Marchantia polymorpha.

Shimamura M et al (2016).
Plant Cell Physiol.
PubMed:
26657892