1. Güce district, north-eastern Turkey Uses: diabetes, sore throat, tonsilitis, stomach disorder, anemia, cough, burn, rheumatism, intestinal disorder, headache, joint pain, dyspepsia, bone fracture DOI: 10.1016/j.pld.2022.03.005 PubMed: 36540712
1. [Exposures to fruit plants in Germany from 2010-2019 : Analysis of the Erfurt joint poison information center database]. Wendt S et al (2023). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. DOI: 10.1007/s00103-023-03780-7 PubMed: 37828294
2. Risk of Poisoning from Garden Plants: Misidentification between Laurel and Cherry Laurel. Malaspina P et al (2022). Toxins (Basel). DOI: 10.3390/toxins14110726 PubMed: 36355976
3. Coleoptera claws and trichome interlocking. Salerno G et al (2022). J Comp Physiol A Neuroethol Sens Neural Behav Physiol. DOI: 10.1007/s00359-022-01554-1 PubMed: 35616716
4. Changes of Endophytic Bacterial Community in Mature Leaves of Prunus laurocerasus L. during the Seasonal Transition from Winter Dormancy to Vegetative Growth. Michalko J et al (2022). Plants (Basel). DOI: 10.3390/plants11030417 PubMed: 35161398
5. Water Sorption and Desorption of Isolated Cuticles From Three Woody Species With Focus on Ilex aquifolium. Vega C et al (2021). Front Plant Sci. DOI: 10.3389/fpls.2021.728627 PubMed: 34671373
6. Identification and Molecular Analysis of Putative Self-Incompatibility Ribonuclease Alleles in an Extreme Polyploid Species, Prunus laurocerasus L. Genetics Halász J et al (2021). Front Plant Sci. DOI: 10.3389/fpls.2021.715414 PubMed: 34630463
7. Effect of host plant on the life history of the carnation tortrix moth Cacoecimorpha pronubana (Lepidoptera: Tortricidae). Genetics Zielonka MW, Pope TW and Leather SR (2022). Bull Entomol Res. DOI: 10.1017/S0007485321000493 PubMed: 34229772
8. Suspected cyanide toxicity in cattle associated with ingestion of laurel - a case report. Kennedy A et al (2021). Ir Vet J. DOI: 10.1186/s13620-021-00188-0 PubMed: 33762021
9. Simultaneously measuring pulse-amplitude-modulated (PAM) chlorophyll fluorescence of leaves at wavelengths shorter and longer than 700 nm. Pfündel EE et al (2021). Photosynth Res. DOI: 10.1007/s11120-021-00821-7 PubMed: 33528756
10. Compositional, structural and functional cuticle analysis of Prunus laurocerasus L. sheds light on cuticular barrier plasticity. Diarte C et al (2021). Plant Physiol Biochem. DOI: 10.1016/j.plaphy.2020.11.028 PubMed: 33257229
11. First report of leaf blight caused by Phytophthora ramorum on cherry laurel (Prunus laurocerasus) in Washington State, USA. Elliott M et al (2020). Plant Dis. DOI: 10.1094/PDIS-07-20-1489-PDN PubMed: 33021922
12. Comparative studies on structure of the floral nectaries and the abundance of nectar production of Prunus laurocerasus L. Chwil M, Kostryco M and Matraszek-Gawron R (2019). Protoplasma. DOI: 10.1007/s00709-019-01412-z PubMed: 31312908
13. First Record of Leaf Spots on Prunus laurocerasus in Belgium Caused by Phytophthora cactorum and Peronospora sparsa. Crepel C and Inghelbrecht S (2002). Plant Dis. DOI: 10.1094/PDIS.2002.86.5.563A PubMed: 30818698
14. Wound healing effects of methanol extract of Laurocerasus officinalis roem. Ayla S et al (2019). Biotech Histochem. DOI: 10.1080/10520295.2018.1539242 PubMed: 30409033
15. Occurrence of Benzoic Acid Esters as Putative Catabolites of Prunasin in Senescent Leaves of Prunus laurocerasus. Sendker J, Ellendorff T and Hölzenbein A (2016). J Nat Prod. DOI: 10.1021/acs.jnatprod.5b01090 PubMed: 27331617
16. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier. Zeisler V and Schreiber L (2016). Planta. DOI: 10.1007/s00425-015-2397-y PubMed: 26341347
17. Chemical composition of the Prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Jetter R and Schäffer S (2001). Plant Physiol. PubMed: 11500570