Prunus mume

Common Names: Japanese apricot

Ethnobotanical Studies

Studies

Panax ginseng extract prevents UVB-induced skin photodamage by modulating VMP1-mediated ER stress.

Chen J et al (2024).
Phytomedicine.
PubMed:
39232284

Genome-Wide Analysis of the Gibberellin-Oxidases Family Members in Four Prunus Species and a Functional Analysis of PmGA2ox8 in Plant Height.

Li X et al (2024).
Int J Mol Sci.
PubMed:
39201381

The Effect of One-Year Fermentation of Maesil Fruit (Prunus mume) Sugar Syrup on Amygdalin Level: A Natural Toxic Compound.

Ramalingam S et al (2024).
Foods.
PubMed:
39200536

The effect of plum extracts and antioxidants on reduction of ethyl carbamate in plum liqueur.

Jung S et al (2024).
Food Sci Biotechnol.
PubMed:
39145126

Antioxidant Activity of Extracts of Balloon Flower Root (Platycodon grandiflorum), Japanese Apricot (Prunus mume), and Grape (Vitis vinifera) and Their Effects on Beef Jerky Quality.

Kim BJ et al (2024).
Foods.
PubMed:
39123579

The pan-plastome of Prunus mume: insights into Prunus diversity, phylogeny, and domestication history.

Wang J et al (2024).
Front Plant Sci.
PubMed:
38887455

Regulatory role of Prunus mume DAM6 on lipid body accumulation and phytohormone metabolism in the dormant vegetative meristem.

Hsiang TF et al (2024).
Hortic Res.
PubMed:
38883329

Abscisic acid induces PpeKIL1 to terminate fruit growth and promote fruit abortion in peach (Prunus persica).

Zhou H et al (2024).
Plant Physiol Biochem.
PubMed:
38805756

Rapid determination of total flavonoid content, xanthine oxidase inhibitory activities, and antioxidant activity in Prunus mume by near-infrared spectroscopy.

Summary

They used NIR to predict flavonoid, xanthine oxidase inhibitory, and antioxidant activity in Prunus mume. The model is effective for quick quantification and can be extended to other medicinal plants.

Hao JW et al (2024).
J Pharm Biomed Anal.
PubMed:
38776585

Effects of Different Varieties on Physicochemical Properties, Browning Characteristics, and Quality Attributes of Mume fructus (Wumei).

Gao L et al (2024).
Foods.
PubMed:
38731748

Integration of Metabolomic and Transcriptomic Analyses Reveals the Molecular Mechanisms of Flower Color Formation in Prunus mume.

Wang R et al (2024).
Plants (Basel).
PubMed:
38674486

Mutations overlying the miR172 target site of TOE-type genes are prime candidate variants for the double-flower trait in mei.

Gattolin S et al (2024).
Sci Rep.
PubMed:
38538684

Spatial and Temporal Disparity Analyses of Glycosylated Benzaldehyde and Identification and Expression Pattern Analyses of Uridine Diphosphate Glycosyltransferase Genes in Prunus mume.

Jia H et al (2024).
Plants (Basel).
PubMed:
38475550

Prunus mume extract and choline treatment in patients with non-alcoholic fatty liver disease estimated by b-mode ultrasonography and hepatorenal index.

Avramovski P et al (2024).
Caspian J Intern Med.
PubMed:
38463914

A 49-bp deletion of PmAP2L results in a double flower phenotype in Prunus mume.

Liu W et al (2023).
Hortic Res.
PubMed:
38371636

AGAMOUS-LIKE24 controls pistil number in Japanese apricot by targeting the KNOTTED1-LIKE gene KNAT2/6-a.

Bai Y et al (2024).
Plant Physiol.
PubMed:
38345864

[Exploration of cross-cultivar group characteristics of a new cultivar of Prunus mume 'Zhizhang Guhong Chongcui'].

Qin X et al (2024).
Sheng Wu Gong Cheng Xue Bao.
PubMed:
38258644

Allelic variation of PmCBF03 contributes to the altitude and temperature adaptability in Japanese apricot (Prunus mume Sieb. et Zucc.).

Huang X et al (2024).
Plant Cell Environ.
PubMed:
38221869

PbRbohH/J mediates ROS generation to regulate the growth of pollen tube in pear.

Zhang H et al (2024).
Plant Physiol Biochem.
PubMed:
38219427

Genome-wide identification of the bHLH transcription factor family in Rosa persica and response to low-temperature stress.

Zhuang Y et al (2024).
PeerJ.
PubMed:
38188163

Neodothiora pruni sp. nov., a Biosurfactant-Producing Ascomycetous Yeast Species Isolated from Flower of Prunus mume.

Kim JS et al (2023).
Mycobiology.
PubMed:
38179118

Genome-Wide Identification of Callose Synthase Family Genes and Their Expression Analysis in Floral Bud Development and Hormonal Responses in Prunus mume.

Summary

"Study identified and classified 84 GSL genes in plant species, revealing evolutionary patterns and potential roles in plant development and defense responses. Provides groundwork for future research in callose synthesis in perennial trees."

Zhang M et al (2023).
Plants (Basel).
PubMed:
38140486

Effect of water deficit stress during fruit cultivation on the carbon stable isotopes of organic acids in Japanese apricots and liqueur prepared from these fruits.

Akamatsu F et al (2024).
Isotopes Environ Health Stud.
PubMed:
38129760

Mume Fructus (Prunus mume Sieb. et Zucc.) extract accelerates colonic mucosal healing of mice with colitis induced by dextran sulfate sodium through potentiation of cPLA2-mediated lysophosphatidylcholine synthesis.

Zhang J et al (2023).
Phytomedicine.
PubMed:
37516090

Understanding the salt overly sensitive pathway in Prunus: Identification and characterization of NHX, CIPK, and CBL genes.

Acharya BR et al (2023).
Plant Genome.
PubMed:
37493242

Polyphenols from Prunus mume: extraction, purification, and anticancer activity.

Zhao F et al (2023).
Food Funct.
PubMed:
37092717

Multi-component pharmacokinetic study of prunus mume fructus extract after oral administration in rats using UPLC-MS/MS.

Zhu Y et al (2022).
Front Pharmacol.
PubMed:
36210842

First report of mume virus A infecting Prunus salicina worldwide and Prunus mume in Korea.

Lee J et al (2022).
Plant Dis.
PubMed:
35939751

Traditional Japanese apricot (Prunus mume) induces osteocalcin in osteoblasts.

Nomura S et al (2022).
Biosci Biotechnol Biochem.
PubMed:
35150233

Comprehensive Review of Phytochemical Constituents, Pharmacological Properties, and Clinical Applications of Prunus mume.

Gong XP et al (2021).
Front Pharmacol.
PubMed:
34122104