Sedum

Common Names: stonecrop

Ethnobotanical Studies

Studies

Regulatory mechanism of Sarmentosin and Quercetin on lipid accumulation in primary hepatocyte of GIFT tilapia (Oreochromis niloticus) with fatty liver.

Guo R et al (2024).
PLoS One.
PubMed:
39236049

Functional biochar accelerates peroxymonosulfate activation for organic contaminant degradation via the specific B-C-N configuration.

Pan M, He Z and Yang X (2024).
Chemosphere.
PubMed:
39218261

Contribution of plant growth-promoting endophytic bacteria from hyperaccumulator to non-host plant zinc nutrition and health.

Li Z et al (2024).
Int J Phytoremediation.
PubMed:
39185733

Exposure to Gynura japonica (Thunb.) Juel plants induces hepatoxicity in rats and Buffalo rat liver cells.

Wen C et al (2024).
J Ethnopharmacol.
PubMed:
39151710

Sarmentosin alleviates doxorubicin-induced cardiotoxicity and ferroptosis via the p62-Keap1-Nrf2 pathway.

Lin Z et al (2024).
Redox Rep.
PubMed:
39150892

Appropriate sulfur fertilization in contaminated soil enhanced the cadmium uptake by hyperaccumulator Sedum alfredii Hance.

Sun L et al (2024).
Ecotoxicol Environ Saf.
PubMed:
39137467

Harmonizing soil restoration and microbial diversity: Insights from a Two-Year field experiment with Sedum-Rice rotation systems.

Yu S et al (2024).
Sci Total Environ.
PubMed:
39134265

Serendipita indica Drives Sulfur-Related Microbiota in Enhancing Growth of Hyperaccumulator Sedum alfredii and Facilitating Soil Cadmium Remediation.

Qiao Y et al (2024).
Environ Sci Technol.
PubMed:
39116417

Remediation mechanism of high concentrations of multiple heavy metals in contaminated soil by Sedum alfredii and native microorganisms.

Wang Z et al (2025).
J Environ Sci (China).
PubMed:
39003038

Intraspecific variation in tomato: Impact on production quality and cadmium phytoremediation efficiency in intercropping systems with hyperaccumulating plant.

Ma L et al (2024).
Ecotoxicol Environ Saf.
PubMed:
39002378

Rapid assessment of heavy metal accumulation capability of Sedum alfredii using hyperspectral imaging and deep learning.

Lu Y et al (2024).
Ecotoxicol Environ Saf.
PubMed:
38996646

Enhancement of cadmium uptake in Sedum alfredii through interactions between salicylic acid/jasmonic acid and rhizosphere microbial communities.

Shi A et al (2024).
Sci Total Environ.
PubMed:
38986688

Gossypetin targets the liver-brain axis to alleviate pre-existing liver fibrosis and hippocampal neuroinflammation in mice.

Summary

Researchers found gossypetin, a compound from sedum, effectively treats liver fibrosis and related brain issues in mice. It targets liver-brain axis, reducing liver damage and neuroinflammation. Potential therapy for chronic liver patients with neurological symptoms.

Xu C et al (2024).
Front Pharmacol.
PubMed:
38860164

Flavonoids from the leaves and stems of Sedum japonicum var. senanense and their antioxidant activity.

Summary

Twenty new flavonoids were identified in Sedum japonicum var. senanense leaves. Compound 8 had the highest antioxidant activity, while compounds 11 and 12 had the lowest due to neohesperidose attachment.

Mizuno T et al (2024).
Fitoterapia.
PubMed:
38848979

Physiology and transcriptomic analysis revealed the mechanism of silicon promoting cadmium accumulation in Sedum alfredii Hance.

Yang W et al (2024).
Chemosphere.
PubMed:
38797210

Sarmentol H derived from Sedum sarmentosum Bunge directly targets FXR to mitigate cholestasis by recruiting SRC-1.

Liu Z et al (2024).
Phytomedicine.
PubMed:
38788394

Plant cover and biomass change on extensive green roofs over a decade and ten lessons learned.

MacIvor JS et al (2024).
J Environ Manage.
PubMed:
38761616

Rotation of Celosia argentea and Sedum plumbizincicola promotes Cd phytoextraction efficiency.

Liu J et al (2024).
J Hazard Mater.
PubMed:
38743979

SpCTP3 from the hyperaccumulator Sedum plumbizincicola positively regulates cadmium tolerance by interacting with SpMDH1.

Li S et al (2024).
J Hazard Mater.
PubMed:
38739960

Salicylic Acid's impact on Sedum alfredii growth and cadmium tolerance: Comparative physiological, transcriptomic, and metabolomic study.

Shi A et al (2024).
Environ Res.
PubMed:
38729407

Enhancing the phytoextraction efficiency of heavy metals in acidic and alkaline soils by Sedum alfredii Hance: A study on the synergistic effect of plant growth regulator and plant growth-promoting bacteria.

Chen Z et al (2024).
Sci Total Environ.
PubMed:
38719039

Intraspecific and Intrageneric Genomic Variation across Three Sedum Species (Crassulaceae): A Plastomic Perspective.

Zhang S et al (2024).
Genes (Basel).
PubMed:
38674379

Plant-Assisted Green Synthesis of MgO Nanoparticles as a Sustainable Material for Bone Regeneration: Spectroscopic Properties.

Proniewicz E et al (2024).
Int J Mol Sci.
PubMed:
38673825

Corrigendum to "Jasmonic acid's impact on Sedum alfredii growth and cadmium tolerance: A physiological and transcriptomic study" [Sci. Total Environ. 914 (2024) 169939].

Shi A et al (2024).
Sci Total Environ.
PubMed:
38604830

Improving Sedum plumbizincicola genetic transformation with the SpGRF4-SpGIF1 gene and the self-excision CRE/LoxP system.

Zhang Y et al (2024).
Planta.
PubMed:
38594473

Symplasmic and transmembrane zinc transport is modulated by cadmium in the Cd/Zn hyperaccumulator Sedum alfredii.

Cao K et al (2024).
Ecotoxicol Environ Saf.
PubMed:
38564870

Sedum aizoon L.: a review of its history, traditional uses, nutritional value, botany, phytochemistry, pharmacology, toxicology, and quality control.

Summary

Study explores the nutritional and medicinal properties of L. (). Contains diverse bioactive compounds with antioxidant, anti-inflammatory, anti-fatigue, antimicrobial, anti-cancer, and cardiovascular benefits. Important for potential therapeutic applications and quality control.

Wang BL et al (2024).
Front Pharmacol.
PubMed:
38549672

Overexpressing PagGS1;2 maintains carbon and nitrogen balance under high-ammonium conditions and shows increased tolerance to ammonium toxicity in 84K Poplar.

Leng X et al (2024).
J Exp Bot.
PubMed:
38497908

Copper-dependent control of uptake, translocation and accumulation of cadmium in hyperaccumlator Sedum alfredii.

Ma C et al (2024).
Sci Total Environ.
PubMed:
38387586

Impacts of simulated atmospheric cadmium deposition on the physiological response and cadmium accumulation of Sedum plumbizincicola.

Huang S et al (2024).
Environ Sci Pollut Res Int.
PubMed:
38315335

DNA-SIP delineates unique microbial communities in the rhizosphere of the hyperaccumulator Sedum alfredii which are beneficial to Cd phytoextraction.

Hu L et al (2024).
Ecotoxicol Environ Saf.
PubMed:
38301580

Jasmonic acid's impact on Sedum alfredii growth and cadmium tolerance: A physiological and transcriptomic study.

Shi A et al (2024).
Sci Total Environ.
PubMed:
38211868

Foliar application of plant growth regulators for enhancing heavy metal phytoextraction efficiency by Sedum alfredii Hance in contaminated soils: Lab to field experiments.

Chen Z et al (2024).
Sci Total Environ.
PubMed:
38181951

Ectopic expression of SaCTP3 from the hyperaccumulator Sedum alfredii in sorghum increases Cd accumulation for phytoextraction.

Wang H et al (2024).
Environ Pollut.
PubMed:
38176638

Effects of tomato-Sedum alfredii Hance intercropping on crop production and Cd remediation as affected by soil types.

Liu Y et al (2023).
Environ Sci Pollut Res Int.
PubMed:
38091222

Cytokinin-mediated shoot proliferation and its correlation with phytoremediation effects in Cd-hyperaccumulator ecotype of Sedum alfredii.

Yu S et al (2023).
Sci Total Environ.
PubMed:
38043818

Cadmium levels and soil pH drive structure and function differentiation of endophytic bacterial communities in Sedum plumbizincicola: A field study.

Zhang J et al (2023).
Sci Total Environ.
PubMed:
38029975

A chromosome-scale genome sequence of Aeonium(Aeonium arboreum 'Velour') provides novel insights into the evolution of anthocyanin synthesis.

Summary

Scientists analyzed 'Velour' A. arboreum genome, identifying unique gene families, including anthocyanin synthesis. Flavonoids, like anthocyanin, help plants adapt to stress, like high CO2 and temperature. Study sheds light on anthocyanin synthesis evolution and its link to light energy usage.

Han H et al (2023).
Gene.
PubMed:
38008272

Ethnobotanical Documentation of the Uses of Wild and Cultivated Plants in the Ansanto Valley (Avellino Province, Southern Italy).

Motti R et al (2023).
Plants (Basel).
PubMed:
37960047

Variations in microbial assemblage between rhizosphere and root endosphere microbiomes contribute to host plant growth under cadmium stress.

Shao L et al (2023).
Appl Environ Microbiol.
PubMed:
37855640

Effects of willow and Sedum alfredii Hance planting patterns on phytoremediation efficiency under AC electric field.

Zhou C et al (2023).
Environ Sci Pollut Res Int.
PubMed:
37845595

The complete chloroplast genome sequences of six Hylotelephium species: Comparative genomic analysis and phylogenetic relationships.

An SM et al (2023).
PLoS One.
PubMed:
37815995

Prediction of cadmium and zinc phytoextraction by the hyperaccumulator Sedum plumbizincicola using a dynamic geochemical mechanical combination model.

Li S et al (2023).
Sci Total Environ.
PubMed:
37804972

Phytoextraction of highly cadmium-polluted agricultural soil by Sedum plumbizincicola: An eight-hectare field study.

Wang Y et al (2023).
Sci Total Environ.
PubMed:
37734600

Improved efficiency of Sedum lineare (Crassulaceae) in remediation of arsenic-contaminated soil by phosphate-dissolving strain P-1 in association with phosphate rock.

Yang S et al (2023).
Environ Geochem Health.
PubMed:
37597084

Sedum Growth Patterns under Different Pedoclimatic Conditions.

Cotoz AP et al (2023).
Plants (Basel).
PubMed:
37514353

Exploring Transcriptional Regulation of Hyperaccumulation in Sedum plumbizincicola through Integrated Transcriptome Analysis and CRISPR/Cas9 Technology.

Zhang Y et al (2023).
Int J Mol Sci.
PubMed:
37511604

Does phytoextraction with Sedum plumbizincicola increase cadmium leaching from polluted agricultural soil?

Zhou T et al (2023).
Int J Phytoremediation.
PubMed:
37463004

Intercropping Sedum alfredii Hance and Cicer arietinum L. does not present a suitable land use pattern for multi-metal-polluted soil.

He H et al (2023).
Environ Sci Pollut Res Int.
PubMed:
37454382

Soil water stress alters differentially relative metabolic pathways affecting growth performance and metal uptake efficiency in a cadmium hyperaccumulator ecotype of Sedum alfredii.

Yu S et al (2023).
Environ Sci Pollut Res Int.
PubMed:
37450188

First Report of Stemphylium lycopersici Causing Leaf spot on Sedum plumbizincicola in Hunan Province of China.

Zhong J et al (2023).
Plant Dis.
PubMed:
37443397

Callose deposition analysis with special emphasis on plasmodesmata ultrastructure during megasporogenesis in Sedum (Crassulaceae).

Brzezicka E and Kozieradzka-Kiszkurno M (2023).
Protoplasma.
PubMed:
37418158

Sustainable utilization of Sedum plumbizincicola as superior hydrochar for efficient nutrients recovery.

Zhang R et al (2023).
J Environ Manage.
PubMed:
37379626

Phytoextraction and Migration Patterns of Cadmium in Contaminated Soils by Pennisetum hybridum.

Chen C et al (2023).
Plants (Basel).
PubMed:
37375945

Evaluating the ability of green roof plants in capturing air pollutants using biogas-digestate: Exploring physiological, biochemical, and anatomical characteristics.

Karimian Z, Hozhabralsadat MS and Heidari A (2023).
Environ Pollut.
PubMed:
37356793

Field-scale differences in rhizosphere micro-characteristics of Cichorium intybus, Ixeris polycephala, sunflower, and Sedum alfredii in the phytoremediation of Cd-contaminated soil.

Zeng X et al (2023).
Ecotoxicol Environ Saf.
PubMed:
37320919

Sulfur fertilization and water management ensure phytoremediation coupled with argo-production by mediating rhizosphere microbiota in the Oryza sativa L.-Sedum alfredii Hance rotation system.

Qiao Y et al (2023).
J Hazard Mater.
PubMed:
37270958

Hepatoprotective and nephroprotective effects of Sedum adenotrichum in paracetamol-induced hepatotoxicity in rabbits.

Naz D et al (2023).
3 Biotech.
PubMed:
37260579

Cadmium inhibits powdery mildew colonization and reconstructs microbial community in leaves of the hyperaccumulator plant Sedum alfredii.

Xu L et al (2023).
Ecotoxicol Environ Saf.
PubMed:
37257346

Correction to "Role of Vertical Transmission of Shoot Endophytes in Root-Associated Microbiome Assembly and Heavy Metal Hyperaccumulation in Sedum alfredii".

Luo J et al (2023).
Environ Sci Technol.
PubMed:
37196317

Assessment of Fresh Miscanthus Straw as Growing Media Amendment in Nursery Production of Sedum spectabile 'Stardust' and Hydrangea arborescens 'Annabelle'.

Pancerz M, Czaplicka M and Bąbelewski P (2023).
Plants (Basel).
PubMed:
37111862

Characterization of Volatile Organic Compound Emissions and CO(2) Uptake from Eco-roof Plants.

Laguerre A et al (2023).
Build Environ.
PubMed:
37065504

Biochar loaded with bacteria enhanced Cd/Zn phytoextraction by facilitating plant growth and shaping rhizospheric microbial community.

Shi A et al (2023).
Environ Pollut.
PubMed:
37023890

Functional characterization of a DNA-damage repair/tolerance 100 (DRT100) gene in Sedum alfredii Hance for genome stability maintenance and Cd hypertolerance.

Liu M et al (2023).
Environ Pollut.
PubMed:
37019266

Zinc Supply Affects Cadmium Uptake and Translocation in the Hyperaccumulator Sedum Plumbizincicola as Evidenced by Isotope Fractionation.

Zhou J et al (2023).
Environ Sci Technol.
PubMed:
36988089

Corrigendum to SaMT3 in Sedum alfredii drives Cd detoxification by chelation and ROS-scavenging via Cys residues [Environmental Pollution 315 (2022) 120410].

Zhao J et al (2023).
Environ Pollut.
PubMed:
36906410

Exogenous silicon promotes cadmium (Cd) accumulation in Sedum alfredii Hance by enhancing Cd uptake and alleviating Cd toxicity.

Hu Y et al (2023).
Front Plant Sci.
PubMed:
36895873

A novel gene SpCTP3 from the hyperaccumulator Sedum plumbizincicola redistributes cadmium and increases its accumulation in transgenic Populus × canescens.

Li S et al (2023).
Front Plant Sci.
PubMed:
36844053

Overexpression of Sedum SpHMA2, SpHMA3 and SpNramp6 in Brassica napus increases multiple heavy metals accumulation for phytoextraction.

Yang Z et al (2023).
J Hazard Mater.
PubMed:
36801723

Novel insights into indoor air purification capability of microalgae: characterization using multiple air quality parameters and comparison with common methods.

Wang Q et al (2023).
Environ Sci Pollut Res Int.
PubMed:
36787060

Machine learning method for predicting cadmium concentrations in rice near an active copper smelter based on chemical mass balance.

Mi Y et al (2023).
Chemosphere.
PubMed:
36736477

Green roofs and pollinators, useful green spots for some wild bee species (Hymenoptera: Anthophila), but not so much for hoverflies (Diptera: Syrphidae).

Jacobs J, Beenaerts N and Artois T (2023).
Sci Rep.
PubMed:
36702922

Co-pyrolysis of sewage sludge as additive with phytoremediation residue on the fate of heavy metals and the carbon sequestration potential of derived biochar.

He T, Zhang M and Jin B (2023).
Chemosphere.
PubMed:
36581119

Film mulching alters soil properties and increases Cd uptake in Sedum alfredii Hance-oil crop rotation systems.

Yang W et al (2023).
Environ Pollut.
PubMed:
36574807

Intercropping of Pinellia ternata (herbal plant) with Sedum alfredii (Cd-hyperaccumulator) to reduce soil cadmium (Cd) absorption and improve yield.

Ng CWW et al (2023).
Environ Pollut.
PubMed:
36565916

Microbial community assembly of the hyperaccumulator plant Sedum plumbizincicola in two contrasting soil types with three levels of cadmium contamination.

Huang Y et al (2023).
Sci Total Environ.
PubMed:
36529394

Lead dissociation and redistribution properties of actual contaminated farmland soil after long-term EKAPR treatment.

Ma H et al (2023).
Environ Geochem Health.
PubMed:
36515753

Manganese-modified biochar promotes Cd accumulation in Sedum alfredii in an intercropping system.

Chen X et al (2023).
Environ Pollut.
PubMed:
36368551

The Therapeutic Potential of Salidroside for Parkinson's Disease.

Summary

Parkinson's disease (PD) is caused by the loss of dopamine neurons in the brain, and its incidence increases with age. Salidroside is a compound found in certain plants, which has been studied for its effects on the nervous system. This review summarizes salidroside's impact on dopamine metabolism, neuronal protection, and glial activation in relation to PD. The article also describes several genes that affect PD susceptibility and the related mechanisms involving antioxidation, inflammation, and autophagy. While these studies were conducted on animals and cells, they suggest that salidroside may be a useful treatment for PD in the future.

Li L and Yao W (2023).
Planta Med.
PubMed:
36130710

[Corrigendum] Anti‑fibrotic effect of Sedum sarmentosum Bunge extract in kidneys via the hedgehog signaling pathway.

Bai Y et al (2022).
Mol Med Rep.
PubMed:
35234264

GLDA and EDTA assisted phytoremediation potential of Sedum hybridum 'Immergrunchen' for Cd and Pb contaminated soil.

Guan H et al (2022).
Int J Phytoremediation.
PubMed:
35166632

Genome-Wide Characterization of Sedum plumbizincicola HMA Gene Family Provides Functional Implications in Cadmium Response.

Huang Q et al (2022).
Plants (Basel).
PubMed:
35050103

A field study reveals links between hyperaccumulating Sedum plants-associated bacterial communities and Cd/Zn uptake and translocation.

Wu Y et al (2022).
Sci Total Environ.
PubMed:
34818769

Chemical constituents and absolute configuration of megastigmanes' isolated from Sedum sarmentosum Bunge.

Doan DX et al (2022).
Nat Prod Res.
PubMed:
33078638