Solanum pimpinellifolium

Common Names: currant tomato

Ethnobotanical Studies

Studies

High-Resolution Disease Phenotyping Reveals Distinct Resistance Mechanisms of Tomato Crop Wild Relatives against Sclerotinia sclerotiorum.

Einspanier S et al (2024).
Plant Phenomics.
PubMed:
39105186

Domestication and Genetic Improvement Alter the Symbiotic Microbiome Structure and Function of Tomato Leaf and Fruit Pericarp.

Li F et al (2024).
Microorganisms.
PubMed:
39065120

Prediction of suitable regions of wild tomato provides insights on domesticated tomato cultivation in China.

Liu P et al (2024).
BMC Plant Biol.
PubMed:
39039437

New population of Solanum pimpinellifolium backcross inbred lines as a resource for heat stress tolerance in tomato.

Bashary N et al (2024).
Front Plant Sci.
PubMed:
39011307

A novel tomato interspecific (Solanum lycopersicum var. cerasiforme and Solanum pimpinellifolium) MAGIC population facilitates trait association and candidate gene discovery in untapped exotic germplasm.

Arrones A et al (2024).
Hortic Res.
PubMed:
39005998

Deciphering salt stress responses in Solanum pimpinellifolium through high-throughput phenotyping.

Morton M et al (2024).
Plant J.
PubMed:
38970620

Meta-QTL and Candidate Gene Analyses of Agronomic Salt Tolerance and Related Traits in an RIL Population Derived from Solanum pimpinellifolium.

Asins MJ and Carbonell EA (2024).
Int J Mol Sci.
PubMed:
38892245

Plant-on-a-chip: continuous, soilless electrochemical monitoring of salt uptake and tolerance among different genotypes of tomato.

Coatsworth P et al (2024).
Sens Diagn.
PubMed:
38766392

Identification, Classification, and Transcriptional Analysis of Rab GTPase Genes from Tomato (Solanum lycopersicum) Reveals Salt Stress Response Genes.

Soto F et al (2024).
Genes (Basel).
PubMed:
38674387

A natural variation in SlSCaBP8 promoter contributes to the loss of saline-alkaline tolerance during tomato improvement.

Liu J et al (2024).
Hortic Res.
PubMed:
38659442

Evaluation of Tomato Germplasm against Tomato Brown Rugose Fruit Virus and Identification of Resistance in Solanum pimpinellifolium.

Jaiswal N et al (2024).
Plants (Basel).
PubMed:
38475428

Beneath the blooms: Unearthing the effect of rhizospheric bacteria on floral signals and pollinator preferences.

Magalhães DM, Lourenção AL and Bento JMS (2023).
Plant Cell Environ.
PubMed:
37994626

A SUPERMAN-like Gene Controls the Locule Number of Tomato Fruit.

Summary

Researchers studied a mutant tomato plant with a gene that controls floral organ development, resulting in abnormal flowers and seedless malformed fruits. The findings contribute to understanding gene function and potential for enhancing tomato yield through genetic engineering.

Zhang M et al (2023).
Plants (Basel).
PubMed:
37765505

An Integrative Transcriptomics and Proteomics Approach to Identify Putative Genes Underlying Fruit Ripening in Tomato near Isogenic Lines with Long Shelf Life.

Summary

Researchers studied tomato ripening in two near-isogenic lines, NIL115 and NIL080, and identified genes that improve fruit firmness and shelf life. This research could help reduce postharvest losses and improve fruit quality through assisted breeding.

Di Giacomo M et al (2023).
Plants (Basel).
PubMed:
37570966

Genomic basis of selective breeding from the closest wild relative of large-fruited tomato.

Yang J et al (2023).
Hortic Res.
PubMed:
37564272

Secreted Peptide SpPIP1 Modulates Disease Resistance and Salt Tolerance in Tomato.

Yang R et al (2023).
J Agric Food Chem.
PubMed:
37535837

Chromosome-scale genome assembly-assisted identification of Mi-9 gene in Solanum arcanum accession LA2157, conferring heat-stable resistance to Meloidogyne incognita.

Jiang L et al (2023).
Plant Biotechnol J.
PubMed:
37074757

Mapping of quantitative trait loci for the nutritional value of fresh market tomato.

Çolak NG et al (2023).
Funct Integr Genomics.
PubMed:
37039853

Induction of glandular trichomes to control whitefly-transmitted viruses in tomato crops: modulation by the natural enemy Nesidiocoris tenuis.

Riahi C et al (2023).
Phytopathology.
PubMed:
36998120

Genomic Insights into the Origin of a Thermotolerant Tomato Line and Identification of Candidate Genes for Heat Stress.

Graci S et al (2023).
Genes (Basel).
PubMed:
36980808

The LEA gene family in tomato and its wild relatives: genome-wide identification, structural characterization, expression profiling, and role of SlLEA6 in drought stress.

Jia C et al (2022).
BMC Plant Biol.
PubMed:
36536303

Natural genetic variation in the HAIRS ABSENT (H) gene increases type-VI glandular trichomes in both wild and domesticated tomatoes.

Gasparini K et al (2023).
J Plant Physiol.
PubMed:
36423448

Physiological genetic variation in tomato fruit chilling tolerance during postharvest storage.

David S et al (2022).
Front Plant Sci.
PubMed:
36160961

Identification of late blight resistance quantitative trait loci in Solanum pimpinellifolium accession PI 270441.

Sullenberger MT et al (2022).
Plant Genome.
PubMed:
35962567

Effect of Cold- and Hot-Break Heat Treatments on the Physicochemical Characteristics of Currant Tomato (Solanum pimpinellifolium) Pulp and Paste.

Sridhar K, Makroo HA and Srivastava B (2022).
Foods.
PubMed:
35741927

Coordinated transcriptional regulation of the carotenoid biosynthesis contributes to fruit lycopene content in high-lycopene tomato genotypes.

Duduit JR et al (2022).
Hortic Res.
PubMed:
35669706

Dynamically expressed small RNAs, substantially driven by genomic structural variants, contribute to transcriptomic changes during tomato domestication.

Qing Y et al (2022).
Plant J.
PubMed:
35514123

Solanum galapagense-derived purple tomato fruit color is conferred by novel alleles of the anthocyanin fruit and atroviolacium loci.

Fenstemaker S et al (2022).
Plant Direct.
PubMed:
35449754

Salinity, waterlogging, and elevated [CO2] interact to induce complex responses in cultivated and wild tomato.

Zhou R et al (2022).
J Exp Bot.
PubMed:
35218649

The Sm gene conferring resistance to gray leaf spot disease encodes an NBS-LRR (nucleotide-binding site-leucine-rich repeat) plant resistance protein in tomato.

Yang H et al (2022).
Theor Appl Genet.
PubMed:
35165745

Ralstonia solanacearum Type III Effector RipJ Triggers Bacterial Wilt Resistance in Solanum pimpinellifolium.

Pandey A et al (2021).
Mol Plant Microbe Interact.
PubMed:
33881922

De novo genome assembly of two tomato ancestors, Solanum pimpinellifolium and Solanum  lycopersicum var. cerasiforme, by long-read sequencing.

Takei H et al (2021).
DNA Res.
PubMed:
33475141

The climatic association of population divergence and future extinction risk of Solanum pimpinellifolium.

Review
Lin YP, Lu CY and Lee CR (2020).
AoB Plants.
PubMed:
32257092

Assessment of Genetic Differentiation and Linkage Disequilibrium in Solanum pimpinellifolium Using Genome-Wide High-Density SNP Markers.

Lin YP, Liu CY and Chen KY (2019).
G3 (Bethesda).
PubMed:
30858236

The Genome Sequence of the Wild Tomato Solanum pimpinellifolium Provides Insights Into Salinity Tolerance.

Razali R et al (2018).
Front Plant Sci.
PubMed:
30349549

The tomato genome sequence provides insights into fleshy fruit evolution.

Tomato Genome Consortium et al (2012).
Nature.
PubMed:
22660326