1. Boreal Forest, Canada Uses: Dermatological infections, Fever, Musculoskeletal disorders, Odontological problems, Pregnancy, child birth, puerperium, Urinary system disorders DOI: 10.1186/1746-4269-8-7 PubMed: 22289509
1. Parallel patterns of genetic diversity and structure in circumboreal species of the Sphagnum capillifolium complex. Imwattana K et al (2024). Am J Bot. DOI: 10.1002/ajb2.16348 PubMed: 38764292
2. Structure and Functions of Endophytic Bacterial Communities Associated with Sphagnum Mosses and Their Drivers in Two Different Nutrient Types of Peatlands. Wang Y et al (2024). Microb Ecol. DOI: 10.1007/s00248-024-02355-6 PubMed: 38407642
3. Vascular plants and mosses as bioindicators of variability of the coastal pine forest (Empetro nigri-Pinetum). Wolski GJ et al (2024). Sci Rep. DOI: 10.1038/s41598-023-50189-y PubMed: 38167576
4. Sphagnum capillifolium holobiont from a subarctic palsa bog aggravates the potential of nitrous oxide emissions. Nie Y et al (2022). Front Plant Sci. DOI: 10.3389/fpls.2022.974251 PubMed: 36160957
5. Establishing trace element concentrations for lichens and bryophytes in the ring of fire region of the Hudson Bay Lowlands, Ontario, Canada. McDonough AM et al (2022). Environ Monit Assess. DOI: 10.1007/s10661-022-09890-0 PubMed: 35218420
6. Bog plant/lichen tissue nitrogen and sulfur concentrations as indicators of emissions from oil sands development in Alberta, Canada. Wieder RK et al (2021). Environ Monit Assess. DOI: 10.1007/s10661-021-08929-y PubMed: 33755795
7. Impacts of peat bulk density, ash deposition and rainwater chemistry on establishment of peatland mosses. Noble A et al (2017). Plant Soil. DOI: 10.1007/s11104-017-3325-7 PubMed: 32009678
8. Increased fire severity alters initial vegetation regeneration across Calluna-dominated ecosystems. Grau-Andrés R et al (2019). J Environ Manage. DOI: 10.1016/j.jenvman.2018.10.113 PubMed: 30602224
9. Effects of airborne ammonium and nitrate pollution strongly differ in peat bogs, but symbiotic nitrogen fixation remains unaffected. van den Elzen E et al (2018). Sci Total Environ. DOI: 10.1016/j.scitotenv.2017.08.102 PubMed: 28822940
10. Origin and diversity of testate amoebae shell composition: Example of Bullinularia indica living in Sphagnum capillifolium. Delaine M et al (2017). Eur J Protistol. DOI: 10.1016/j.ejop.2017.03.002 PubMed: 28363138
11. Modelling and mapping trace element accumulation in Sphagnum peatlands at the European scale using a geomatic model of pollutant emissions dispersion. Diaz-de-Quijano M et al (2016). Environ Pollut. DOI: 10.1016/j.envpol.2016.03.036 PubMed: 27061470
12. Sphagnum can 'filter' N deposition, but effects on the plant and pore water depend on the N form. Chiwa M et al (2016). Sci Total Environ. DOI: 10.1016/j.scitotenv.2016.03.130 PubMed: 27058130
13. Contrasting growth responses of dominant peatland plants to warming and vegetation composition. Walker TN et al (2015). Oecologia. DOI: 10.1007/s00442-015-3254-1 PubMed: 25687830
14. Variation in moss-associated nitrogen fixation in boreal forest stands. Markham JH et al (2009). Oecologia. DOI: 10.1007/s00442-009-1391-0 PubMed: 19543750
15. Freezing cytorrhysis and critical temperature thresholds for photosystem II in the peat moss Sphagnum capillifolium. Buchner O and Neuner G (2010). Protoplasma. DOI: 10.1007/s00709-009-0053-8 PubMed: 19495938
16. Recombination and introgression of nuclear and chloroplast genomes between the peat mosses, Sphagnum capillifolium and Sphagnum quinquefarium. Genetics Natcheva R and Cronberg N (2007). Mol Ecol. PubMed: 17284213
17. Sulphur, nitrogen and carbon content of Sphagnum capillifolium and Pseudevernia furfuracea exposed in bags in the Naples urban area. Vingiani S, Adamo P and Giordano S (2004). Environ Pollut. PubMed: 14749078